
Periodic multiphase solutions of the Kadomtsev-Petviashvili equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 1259

(http://iopscience.iop.org/0305-4470/22/9/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 1259-1274. Printed in the UK 
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equation 
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t Leningrad Branch of the Steklov Mathematical Institute, Fontanka 27, Leningrad 19101 1, 
USSR 
$ Sektion Matematik, Karl-Marx-Universitat, Karl-Marx-Platz, 7010 Leipzig, German 
Democratic Republic 

Received 20 June 1988 

Abstract. N-phase solutions of the Kadomsev-Petviashvili ( KP)  equation, that are periodic 
in space variables x and y ,  were obtained and effectively investigated using the Schottky 
uniformisation, of which a short description is given. Many wave patterns are represented 
graphically as contour plots and as isometric projections for different parameter values of 
two-, three- and four-phase solutions of the K P  equation. 

1. Introduction 

It is well known that the Kadomsev-Petviashvili ( KP) equation 

describes the evolution of long water waves of finite amplitude if they are weakly 
two-dimensional, as well as any weakly non-linear and  weakly two-dimensional phy- 
sical process [ l ] .  The present paper is devoted to a new method for constructing its 
periodic solutions 

u ( x , y , t ) = u ( x + 2 . r r , y , t ) = u ( x , ) I + 2 . r r ,  t ) .  

The main tool in solving the general periodic problem for the K P  equation is the 
theta-function solution. These solutions were found by Krichever [ 2 ]  using the method 
of finite-gap integration theory invented by Novikov, Dubrovin, Matveev, Its and  
others in the mid-1970s [3]. Despite the fact that the explicit theta-function formula 
is well known for these solutions, their investigation is a serious problem due to the 
complicated parametrisation. Several papers deal with the problem of the effective 
construction of the theta-function solutions, of which [4] suggests ‘an algebra- 
geometric’ effectivisation (by effectivisation we mean the concrete description of 
solutions) and [ 5 ]  are devoted to ‘a physical’ effectivisation. We mention that Novikov’s 
hypothesis which is the main idea in the algebra-geometric approach has lead to the 
solution [4,6] of a classical problem of algebraic geometry-the Schottky problem. 
Concerning the effective description of the theta-function solution using the substitution 
technique, only two- and  three-phase interactions can be investigated. 

We should mention also that a portrait of the two-phase solution of the Kdv equation 
appeared in the book by Mumford [7], where a detailed treatment of theta functions 
and their link with integrable equations is given. 

0305-4470/89/091259+ 16$02.50 6 1989 IOP Publishing Ltd 1259 



1260 A I Bobenko and L A Bordag 

The present paper is based on the automorphic approach method suggested by one 
of the authors in [ 8 , 9 ] .  This method makes use of the Schottky uniformisation, as 
effectively applied to calculate the theta-function solutions of the Kdv equation in [ l o ] .  

Let us remark that a similar problem was investigated in the [ l l ] ,  where the 
theta-function substitution technique was used to construct two-phase solutions of the 
KP equation. Our automorphic approach leads to a general result; namely, to a natural 
description of an arbitrary number of interacting phases and to an effective determina- 
tion of the periodic solutions. 

2. Theta-function solutions 

The theta-function solutions of the KP equation were obtained by Krichever. 
Let r be the compact Riemann surface of genus N with the fixed point P, and k 

be the local parameter near P,, i.e. k + 0 ,  P +  P,, P E  r. dui,. . . , duN are the 
holomorphic differentials normalised by 

ja,,; dun = 2nia*n n , m = l ,  . . . ,  N 

in the fixed canonical basis of cycles a , ,  b , ,  . . . , a N ,  6,. R( P )  is the Abelian integral 
of the second kind, normalised by the conditions j,,,, dR  = 0, having a single pole at 
P,. The formulae 

dun = fn (k )  d k  n = 1 ,  . . . ,  N R = k-' - ck+O(k2)  (2) 
holding in a neighbourhood of P, define the constant c and the vectors U, V, W E  @ 
by means of 

W,, =- -f ( k )  2 d k 2  
n = l ,  . . . ,  N. 

( 3 )  

The Riemann theta function 

is determined by the period matrix B,, = j b , , ,  dun of r. 
Theorem 1 (see [2]). The theta-function (N-phase wave) solutions of equation ( 1 )  are 
given by the formula 

a' 
ax ( 5 )  

where D E  @ "  is an arbitrary vector (see also [4]). 
For applications in physics only the real solutions are needed. As is well known, 

there are two different types of the KP equation which cannot be transformed each 
into another by a real change of variables. Equation (1 )  is called the K P ~  equation. 
The complex transformation of (1) 

u ( x , ~ ,  t ) = 2 7 1 n e ( U x + V y +  W r + D / B ) + 2 c  

x + i x  Y + i Y  ? + i t  
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yields the KPi equation 

3 a 
au, = - [ U, - a( 6 UU, - U,,, )] . 

ax 

Recently Dubrovin and Natanzon [12] and Krichever [13] have isolated all real 
non-singular theta-function solutions of both the K P i  and K P ~  equations. For the KPZ 

equation their result can be formulated in the following manner: 

Theorem 2 (see 1121). For real and non-singular solutions (5) of the K P ~  equation it 
is necessary and sufficient that the triple (r, P,, k )  and the vector D satisfy the 
following two conditions. 

(i) r is an M-curve, i.e. there is an antiholomorphic involution r :  r+r ,  r 2 =  1, 
with the maximal possible number of real ovals T o , .  . . , r N  ( a  real oval is the connected 
set of fixed points of 7). Besides this the conditions rP, = P, and ~ * k  = hold. Here 
P, is chosen to be at To. 

(ii) If the basis of cycles is chosen so that ra, = a, ,  76, = -b,, then D is purely 
imaginary and, on the contrary, for ra, = - a t ,  rb, = b, it is real, D E  RN.  

Figure 1 represents the four-phase periodic solution with the following values of 
the parameters: 

1 0.500 0.243 -0.199 -0.157 \ 

I 0.243 0.800 -0.127 -0.102 
-0.199 -0.127 1.100 0.645 I B = - 2 ~  

1-0.157 -0.102 0.645 1.500 J 
D = ( O , O ,  0,O) 

U =i(-1.000, -1.000,2.000,2.000) 

V=i(1.000,2.000, 1.000,2.000) 

W = i(-0.545, -2.939, -1.909, -7.388). 

c = -0.112 

These values are obtained by the automorphic approach technique, which is described 
below. 

Let us remark that N-phase wave solutions are important for handling the periodic 
problem. 

Theorem 3 (see 1131). For any real non-singular periodic solution u ( x ,  y,  t )  of the K P ~  

equation there exists a sequence of N-phase wave solutions u N ( x ,  y ,  t ) ,  N = 1 ,2 , .  . . , 
uniformly converging to u ( x ,  y ,  t )  with all derivatives for any x, y and for any interval 
I l l <  To. 

3. The Schottky uniformisation 

Let c , ,  c i ,  . . . , c N ,  ch be a set of 2 N  mutually disjoint Jordan curves on @, which 
comprise the boundary of a 2N-connected domain F (see figure 2). The linear 
transformation U, 

u,z-B, Z - E ,  
- A- (+,,z-AA, Z - A ,  Ipnl < 1, n = 1 , .  . . , N -- 
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transforms the outside of a boundary curve c, onto the inside of a boundary curve 
c:, uric, = c:. A,, and B, are the fixed points of the loxodromic transformation U“. 

A I Bobenko and L A Bordag 

The elements U of the group PSL(2, C )  have the following representation: 

1. (ff ”>- 1 ( A G - B I G  -AB(&-lI&) uz =- f f z + p  
yz+6  y 6 A - B  &--l/& - B & + A / G  

The centre of the isometric circle is given by 

-~I~=(BG-AI&)(G-  iiG)-’ 
and its radius equals I y1-l. 

Figure 1. ( a )  The isometric projection of the surface u ( x ,  y, 0). This surface is represented 
as a set of lines which are produced by the intersection of the wave surface with planes 
being parallel to the x and y axes respectively. ( b )  The isolines u ( x ,  y, 0) =constant, i.e. 
the contour plot of the same solution. The range of the variations of x and y equals two 
periods of the solution, i.e. [ 0 ,4~ ] ,  r = 0. 
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The collections of elements g, , . . . , uN generate a Schottky group G [ 141. F is the 
fundamental domain of G. If all the boundary curves c,, c; are circles then the Schottky 
group is called classical [15]. More generally, Schottky groups can be characterised 
as those finitely generated, discontinuous groups which are free and purely loxodromic 
[16]. It turns out to be equivalent to the previous one because any free system of 
generators of such a group gives rise to a fundamental domain F considered above 
[17]. Let R(G) be the set of discontinuity of G, then n/G is the compact Riemann 
surface of genus N. 

According to the classical theorem [ 181 any compact Riemann surface r of genus 
N can be represented in this form. More precisely, let N homologically independent 
simple disjoint loops u1 , . . . , o , ~  be chosen on r. r, cut along these loops, is a plane 
region. It is mapped conformally to the fundamental domain F of the corresponding 
Schottky group G, v, being mapped exactly at the curves c;, c,. If two loop systems 
U,, . . . , vN and v i , .  . . , u h  generate the same subgroups in H1(T, Z) then they determine 
the same group G but with different choice of generators. A difference of the subgroups 
leads to a difference of the uniformising Schottky groups G and G'. Choose a canonical 
basis H1(I', Z) so that a-cycles coincide with the loops U, = a,,. This canonical basis 
of cycles of R /G is presented in figure 2 :  a, coincide with c; positively oriented, b, 
runs on F between the points z ,  E c, and u,z, E c:, and b-cycles do  not mutually 
intersect. 

Denote by G, the subgroup of G generated by U,. Cosets G/G, and G,\G/G, 
are sets of all elements U = ai;, . . . , g$, j ,  # 0 so that ik # n and for G,\G/G, addi- 
tionally il  Z m. The following proposition is due to the classic papers [ 19,201. 

Proposition. If  the series 

are absolutely convergent then they define holomorphic differentials normalised in the 
basis shown in figure 2 .  The period matrix is given by 
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where {. . .} means the double-ratio 

4. Convergence of Poincare series 

The series ( 6 )  are (-2)-dimensional Poincare theta series (for a general theory of 
automorphic forms for Schottky groups see [21]). For a general Schottky group they 
can be absolutely divergent [22,23]. However, if a Schottky group is classical and  
satisfies some restrictions then (-2)-dimensional theta series are convergent. 

Assume that 2 N  - 3 circles I , ,  . . . , 1 2 N - 3  can be fixed on the fundamental domain 
F so that the following conditions are satisfied. 

( i )  The circles I , , .  . . , 12N-3, c l , .  . . , c N ,  c ; ,  . . . , C A  are mutually disjoint. 
(ii) The circles I , ,  . . . , 12N-3 divide F into 2 N  -2  regions T I , .  . . , T 2 N - 2 .  
(iii) Each T, has exactly three boundary circles (see figures 3 and 5 ) .  
Let us call these Schottky groups ‘circle decomposable’. The Schottky condition 

(see [4,24]) states that (-2)-dimensional PoincarC series corresponding to circle- 
decomposable Schottky groups are absolutely convergent. 

In particular, each Schottky group having the invariant circle is always circle 
decomposable and  the series are convergent [18,19]. The convergence is also proved 
in the case when the circles c k ,  c ; ,  k = 1 , .  . . , N, are small enough and  far from each 
other (the corresponding estimates can be found in [ 19,201). 

Let us pick out one of these regions T,, i = 1 , .  . . , 2 N  -2, (see figure 3). Consider 
any two circles of the boundary of T,. Let R, r be their radii and  e be the distance 
between their centres. So considering various pairs of circles we assign three numbers 
K : ,  K f ,  KI to each T, :  

K = ( RZ + r2  - e2)2(2Rr)-2 - 1. 

Put K = min(K1, K : ,  . . . , K : N - 2 ) .  The proof [14,24] of the Schottky conver- 
gence principle shows that the series converges better at larger k. The speed of 
convergence is characterised by the maximal K possible among various decompositions 

K * =  max K 
1 , . / 2 ,  . 1 2 \ - ,  

and K * depends on uniformisation itself only. 

Figure 3. A region 7, having exactly three boundary circles. 
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5. Schottky uniformisation of the M-curves 

In this section we show that any M-curve has the Schottky uniformisation R /G (i.e. 
one can choose the loops u l ,  . . . , v N )  so that: 

( i )  the series (7)  determined by this uniformisation are absolutely convergent; 
(ii) the set S = { A l ,  B 1 ,  p l , .  . . , A N ,  B N ,  p N }  

Let r be a M-curve, and To, .  , , , r N  be its real ovals, which decompose 
of the uniformisation parameters can be explicitly described. 

into two 
components r+ and r- .  Each of these two components is a sphere with N + 1 boundary 
curves. Consider the Fuchsian uniformisation H / G  of the surface r,, where H is the 
u?per complex half-plane and G is the Fuchsian group of the second kind. The factor 
RIG,  with = { z  E C, Im z <0} is conformally equivalent to r-. So the Schottky 
group G uniformising r is the Fuchsian group of the second kind. The loops U, satisfy 
the condition TU, = -U, (here the direction is changed). The circles c,, ch, n = 1, . . . , N 
are orthogonal to the real axis. The complete description of the set S can be easily 
obtained as described by Natanzon [25]. For the generators shown on figure 4 it is [9] 

B N < B N - l <  . . .  < B l < A l <  . . .  <AN 
(8) 

O < & < l ;  n = l ,  . . . ,  N 

A , + l } >  (G+G)* n = 1 , .  . . , N - 1 .  
1 + 4 G z  

IB", An, & + 1 ,  

The (-2)-dimensional Poincari theta series always converges for the Fuchsian 
groups of the second kind [ 18,191. 

W W U 

c; c; C1 

Figure 4. The fundamental domain F of U I .  

c2 

To study small-amplitude waves of the K P ~  equation it is more convenient to 
consider another Schottky uniformisation of the M-curve. r, can be always mapped 
to the upper half-plane with N discs removed whereby P,  is mapped to cc [ 181. Then 
the group G is described as follows (see figure 5 ) :  

B, = A, ImA,>O O < & < l ; n = l ,  . . . ,  N. ( 9 )  

In this case c, and c; are the isometric circles of the transformations U,, and U ; ' .  c, 
and ck are mutually complex conjugated. Since their centres and radii are known (see 
§ 3) it is easy to write down the conditions for the circles to be disjoint: 

These inequalities together with (9) determine S. However, for this uniformisation the 
convergency of the series ( 6 )  can be proved not for any point of S but for its subset 
of circle-decomposable groups. In  particular, the series always converge when N = 2. 
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-- 
/ 

/ 

/ 
/ 

0 
c , 

\ 
. . -- 

Figure 5. The fundamental domain F of uii.  Broken lines show the circle decomposition. 
The corresponding Schottky group leads to the solution presented in figure 1. 

We call the two Schottky uniformisations of the M-curves, as described above, to 
be the uniformisations I and I1 ( U I  and U I I ) .  The loops U, of U I I  (figure 5) are chosen 
uniquely-they are the real ovals of T without P,. In the U I  case U, can be chosen 
in many various ways. One of the possible choices leads to figure 4. The most natural 
is the choice U, when the value K *  is maximal and the series (6) are the most rapidly 
convergent ones. 

6. Formulae for solutions 

Let us return to the K P ~  equation. The local parameter in the neighbourhood of P, = a3 
is equal to k = z - ' .  Then we have from (3) and (6) 

U,= (uA, - (+B, )  Vn = [ (CA,) ' -  (vB,)~I 
U E G / G , ,  usG/G, ,  

w* = c [ ( a A , ) 3  - ((+B")~I. 
U E G / G , ,  

The Abelian integral of the second kind (2) is expressed as follows: 

Wz)= c (a,-cu/r). 
U E G  

Then, applying ( 2 ) ,  we get 
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The K P  equation allows the following transformation. If u(x, y ,  t )  is a solution then 

(13)  

For U I I  the vectors U, V, W, D are purely imaginary. The periodic condition leads 

3 q x ,  y, t )  = u(x  -,at, y ,  t )  - a 

is also a solution of the KP equation. 

to the restriction of the parameters 

i U,, i V,, E Z n = l , . . , N .  (14) 

Let us fix the solution in the class (13) normalised by the condition 

U(X, y, t )  d x  = O .  

As a result we obtain 

6’= W - ~ C U .  (15) 
I?’ 

u(x,y, r)=2,1n e ( u x +  vy+ *t+DlB) 
ax 

In U I  case DER”  is a real vector and  all series are convergent. So the following 
theorem is proved. 

Theorem 4. 
(uI). All real non-singular theta-function solutions of the K P ~  equation are given 

by the formulae (7) ,  ( l l ) ,  (12)  and (15), where the parameters A,,, B,,, p,, belong to 
the set (8) and  D e R N  is an  arbitrary real vector. 

( U I I ) .  For circle-decomposable groups (in particular any two-phase solution) real 
non-singular theta-function solutions of the K P ~  equation can be described by the 
formulae (7) ,  ( l l ) ,  (12)  and (15), where the parameters A,,, p,, belong to the set (9), 
(10) and D is an arbitrary purely imaginary vector. 

When the generators are chosen as in figure 4 then all the U,, are arranged as follows: 

o <  U , <  U,< . . .  < U”. 

We remark also that the simple periodic condition (14) shows that the U I I  representa- 
tion is more convenient to isolate the periodic solutions. In this case A,,, p,, are natural 
convenient parameters of the solution, because for a given I‘ U I I  is unique and we 
have a one-to-one correspondence between A,, , p,, E S and solutions of the K P ~  
equation. 

The same results for the K P i  equation were obtained in [9]. 

7. Multi-soliton solutions and small-amplitude waves 

From the general N-phase wave solution we can arrive by a limiting procedure to two 
kinds of simply described degenerate solutions, namely to the multisoliton solutions 
and to small-amplitude waves. 

Carrying out the limit 

+ n ’ O  n = l , .  . . , N (16) 
the circles c,, and c; collapse to the points A,, and B, respectively. The corresponding 
N-phase solution becomes the multisoliton solution. Let us describe this limiting 
process in detail. 
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In  the degenerate case (16) for all non-identical mappings and arbitrary a, b E F 
the equality a a  = ab holds. Therefore in the series (7),  ( 1  11, (12)  members correspond- 
ing to a =  1 are non-zero only, i.e. 

Re B,, +. -X Bnm +ln{Bm> Am, Bn, An1 n # m, C + O  

Un + An - Bn 
(17) 

V, + A: - B', W, + A: - ~ 3 , .  
The parameter D in solution (15) is arbitrary. Suppose D, is equal to 

D , = - ~ B , , + v n + ~ ( l )  (18) 

where 7, are finite constants. Then i t  can be seen that the argument of the exponential 
function in the series (4) is given by the formula 

4 B,&, ( k ,  - 1 ) + 1 B,,k,k, + k,  ( + V,y + 6',,f + 77, + O( 1 )). 
n n c m  n 

Since all terms of the series with k,  # 0, 1 are identically zero, this series is finite. 
Let (0 ,  l}" be the set of all N-dimensional vectors with coordinates equal to 0 and 1, 
then the limit (17) leads to 

e w X +  vy+ 6 ' r+DIB) -+e (x ,y ,  r )  

where 

exp( 1 k , [ ( A ,  - B , ) x + ( A ; ,  - B i ) y +  ( A i  - B i ) t +  v,,] 
n 

Finally the solution of the K P  equation is given by 

a' 
u (x ,  y, r )  = 2 7 In e(x, y, r ) .  (19) ax 

(see figure 6). 
For solution (19) to be real and non-singular we should apply the limiting procedure 

described above to the U I  type solution, i.e. put A , ,  B, real. 
The limits (18) and (19) for the urr-type case lead to singular solutions. To obtain 

vir-type degenerate non-singular real solutions we need to choose a finite parameter 
0, so that the conditions of theorem 3 are satisfied. Then 

O ( U x + V y + 6 ' t + D I B )  
N 

- 1 +  d Z [ e x p ( U , , x +  V,y+ 6' , t+D,)+exp(-U,x- V,y- 6',,r-D,)] 
n = 1  

- 
U,  + iu, = A,, - A ,  

@,,+iw, = A : - $ ,  D, =id,,. 

V, --$ iu,, = A i  -A', c + o  

Clearly (20) represents a linear superposition of N non-interacting Fourier modes of 
small amplitude (see figure 7 ) .  
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Figure 6. The isometric projection of the big-amplitude two-phase periodic solution in the 
soliton regime. Soliton structure is evident. It has been calculated by U I I  with the 
parameters: U =i(I.OOO, -1,OOO), V=i(O.OOO, -1.000), c =  -0.217, W=i(-O.171, -0.823), 

, r = 0, X, y E [0,4~]. ) 0.400 -0.226 ( -0.226 0.600 
D = ( O , O ) ,  B = -27r 

So far as p,, and c,, are small the solution is described by the linear limit (20). 
When phase amplitudes and, consequently, the dimension of the circles c,,, c i  increase, 
the phases start to interact but the solution remains described by the general UII 

formula. At last, with further amplitude increase we reach the near-soliton regime and 
the U I  description becomes more natural (see figure 8). 

8. Method of calculation 

In this section we present the calculation of the parameters of the solution. The 
calculations are done using formula (15). For convenience approximately all quantities 
are given in the text of this paper with accuracy *lO-3, however they were found with 
accuracy +io-5. 

For the calculation the method of successive approximations is used. The computing 
program consists of two parts. In the first part we find the approximated parameters 
A,,, p,, and in the second calculate all parameters B,,,, U,,, V,, and W,,. We propose 
a solution of the K P  equation with parameters in the neighbourhood of given BO,,, , v", , 
V z .  Let us show in which manner the parameters A,,, p,, emerge from BO,,, , U", v", . 

Substituting the given values BO,,, , U", v", into the formulae 

B n n  = In p n  U,, = A,, -A,, V,, = AZ, - AZ, (21) 

yields the first approximation to the values for A,,, p,,. Suppose A,,, p,, to be fixed; 
then we calculate the values of in,,, fin, ?,, using formulae (7) and (11). From the 
entire series in (7) and (11) terms with Ls6 are used only (if (+ is an element of the 
group G generated by U,,,, U = d;,, . . . , diA %then L is equal L =  Ij , l+.  . . + l j k l ) .  The 
sum rule is: if the sum of all terms with L = L is greater than 1O-6 then the calculation 
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Figure 7. ( a )  The isometric projection and ( b )  the contour plot of the small-amplitude 
periodic solution representing two non-interacting phases. It has been calculated by U I I  
with parameters: U = i(1.000, 1.000), V=i(O.OOO, 1.000), c = -0.00001, W = i(-0.250, 

0.500), D = (0, 0), B = - 2 ~  (i:::: :::::), t = 0, x, Y E [O, 4 ~ 1 .  

is continued over all terms with L = i+ 1 and so on, otherwise the sum procedure is 
terminated. These values are then compared with the initial data BO,,,,, U",, v",. If 
the errors 

AB," = I i n n  - BznI A U n = ~ f i n - U n ~  AV,=IF,-Cv",l (22) 

do not exceed lo-' then the iteration process is finished and the appropriate parameters 
A,,  p, are found. If not, then we repeat this procedure with corrected values of A,,  
p,. These corrections are evident from (21) and (22). At the end of this process we 
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Figure 8. Intermediate case. The phases slightly interact. The parameters are equal: 
U=i(l.OOO, 1.000), V=i(l.OOO, -1.000), c=-0.008, W=i(O.SOO,O.SOO), D=(O,O) ,  E =  

, f = 0,  x, y E [ 0 , 4 n ]  
1.000 -0.111 

-0.111 1.000 
- 2 7  ( 

have A,,, p,, with an error that never exceeds For given parameters A,, F,,, the 
parameters E,,,, U,,, V,,, W,, can be determined from (14). At this step the infinite 
series are replaced by finite sums over all terms with LG 6. In all investigated cases 
the differences between BO,,,, U:, v", and final E,,,,, U,,, V,, d o  not exceed 

The computer plots of some K P ~  solutions and their parameters are shown in figures 
1, 6-8. We now focus our interest on some important cases. At first we show how the 
wave pattern changes on transition from a two-phase solution to a three-phase solution. 
The two-phase solution has parameters: 

U = i( 1 .OOO, 1 .OOO) V = i( 1.000, 2.000) 

W = i(0.523,2.912) D = (0,O) c = -0.105 

i.e. this solution is well approximated by a periodic soliton interaction (see figure 9). 
Let us investigate the solution with one more phase, i.e. the genus-3 solution (figure 

10) with parameters: 

U = i( 1.000, 1 .OOO, 2.000) 

W = i(0.514, 2.926, -2.104) 

V = i( 1 .OOO, 2.000, 1 .OOO) 

D = (O,O,  0) c =  -0.111 

0.500 0.242 0.289 
0.242 0.800 0.191 
0.289 0.191 1.100 

In figure 10 the disturbance due to third wave is evident, though it has a small amplitude. 
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Figure 9. ( a )  The isometric projection and ( b )  contour plot of the two-phase solution. 
The range of the variations of x and y equals [0 ,4n] ,  i.e. two periods of the solution, and 
t =o. 

Uniformisation parameters for all cases described in this paper are given in the 
appendix. 
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Figure 10. The contour plot of the three-phase solution. The range of the variations of x 
and y are equals [ 0 , 4 ~ ] ,  i.e. two periods of the solution, and I = 0. 

Appendix 

The uniformisation parameters for the solutions in figures 1 and 5-10 are as follows. 

Figures 1 and 5. 

A I  = -0.499 + i0.502 

A3 = 0.266+i1.059 

A 2 =  -1.045iiO.533 

A4 = 0.486 + i 1.045 

p1 = 0.042 ~2 = 0.005 p3 = 0.001 pLq = 0.000 07. 

Figure 6. 

A I  = -0.023 + i0.507 

pl = 0.755 

A2 = 0.588 + i0.556 

p2 = 0.014. 

Figure 7. 

A ,  = O.OOO+ i0.500 A z  = 0.500 + i0.500 

p = 0.000 003 ~2 = 0.000 003. 

Figure 8. 
A,  = 0.499 + i0.501 A2 = -0.499 -t i0.501 

pI = 0.002 p2 = 0.002. 

Figure 9. 

A ,  = 0.493 + i0.503 A2 = 1.042 + i0.533 

pI = 0.042 p2 = 0.005. 
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Figure 10. 

A ,  = 0.498 + i0.500 

A3 =2.580+i1.104 

A* = 1.045 + i0.532 

pI = 0.418 11.2 = 0.005 11.3 = 0.0006. 
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